Abstract

Leukemogenesis is a complex process that involves multiple stages of mutation in either hematopoietic stem or progenitor cells, leading to cancer development over time. Acute myeloid leukemia (AML) is an aggressive malignancy that affects myeloid cells. The major disease burden is caused by immature blast cells, which are eliminated using conventional chemotherapies. Unfortunately, relapse is a leading cause of death in AML patients, with 30%-80% experiencing it within 2 years of initial treatment. The dominant cause of relapse in leukemia is the presence of therapy-resistant leukemic stem cells (LSCs). These cells express genes related to stemness that are frequently difficult to eradicate and tend to survive standard treatments. Studies have demonstrated that by targeting the metabolic pathways of LSCs, it is possible to improve outcomes and extend the survival of those afflicted by leukemia. The overwhelming evidence suggests that lipid metabolism is reprogrammed in LSCs, leading to an increase in fatty acid uptake and de novo lipogenesis. Genes regulating this process also play a crucial role in therapy evasion. In this concise review, we summarize the lipid metabolism in normal hematopoietic cells, AML blast cells, and AML LSCs. We also compare the lipid metabolic signatures in de novo versus therapy-resistant AML blast and LSCs. We further discuss the metabolic switches, cellular crosstalk, potential targets, and inhibitors of lipid metabolism that could alleviate treatment resistance and relapse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.