Abstract

The metastatic properties of cancer cells result from genetic and epigenetic alterations that lead to the abnormal expression of key genes regulating tumor phenotypes. Recent discoveries suggest that aberrant DNA methylation provides cancer cells with advanced metastatic properties; however, the precise regulatory mechanisms controlling metastasis-associated genes and their roles in metastatic transformation are largely unknown. We injected SK-OV-3 human ovarian cancer cells into the perineum of nude mice to generate a mouse model that mimics human ovarian cancer metastasis. We analyzed the mRNA expression and DNA methylation profiles in metastasized tumor tissues in the mice. The pro-oncogenic anterior gradient 2 (AGR2) gene showed increased mRNA expression and hypomethylation at CpG sites in its promoter region in the metastatic tumor tissues compared with the cultured SK-OV-3 cells. We identified crucial cytosine residues at CpG sites in the AGR2 promoter region. Treatment with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine reduced the level of CpG methylation in the AGR2 promoter and increased the level of AGR2 expression. Next, we explored the functional role of AGR2 in the metastatic transformation of SK-OV-3 cells. SK-OV-3 cells overexpressing AGR2 showed increased migratory and invasive activity. Our results indicate that DNA methylation within the AGR2 promoter modulates more aggressive cancer cell phenotypes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call