Abstract

Patients with temporal lobe epilepsy (TLE) have been indicated to exhibit abnormal resting-state functional connectivity (rsFC) of the cingulate cortex. However, it has remained elusive whether cingulate subregions show different connectivity patterns in TLE. The present study aimed to investigate the differences in rsFC of each cingulate subregion between patients with right-sided TLE (rTLE) and healthy controls (HCs), as well as their association with executive control performance in rTLE. A total of 27 patients with rTLE and 20 age-, sex- and education-matched healthy controls were recruited and all participants underwent resting-state functional MRI and an attention network test for the assessment executive control function. In each hemisphere, the cingulate gyrus (CG) was divided into CG-1 (dorsal area 23; A23d), CG-2 (rostroventral area 24; A24rv), CG-3 (pregenual area 32; A32p), CG-4 (ventral area 23; A23v), CG-5 (caudodorsal area 24; A24cd), CG-6 (caudal area 24; A23c) and CG-7 (subgenual area 32; A32sg). Pearson's correlation analysis was performed to assess the correlation between the altered FCs of the cingulate subregions and clinical variables. In patients with rTLE, the majority of the cingulate subregions exhibited decreased rsFC; this was primarily restricted to the right CG-2, the bilateral CG-6 and the bilateral CG-7. Increased rsFC was only detected in rTLE restricted to the left CG-1. Impairments in executive control efficiency were identified in patients with rTLE in comparison with the HCs. Significant alterations in rsFC between the cingulate subregion and the brain regions were mostly decreased (and some slightly increased), suggesting that FC may potentially have a left-side advantage in patients with rTLE. FC variations of the cingulate subregions were indicated to be specific to rTLE. In addition, increased connectivity in the left CG-1 and left superior frontal gyrus were negatively correlated with executive control performance, suggesting a compensatory mechanism on executive control deficits in pathological conditions. This information on differentially altered FC patterns of the cingulate subregions may provide a deeper understanding of the complex neurological mechanisms and executive control dysfunctions underlying rTLE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.