Abstract

Several Arabidopsis genes have been proposed to encode potential clock-associated components, including the Myb-related CCA1 and LHY transcription factors and a member (APRR1/TOC1) of the family of pseudo-response regulators. We previously showed that transcripts of the APRR1/TOC1 family genes each start accumulating after dawn rhythmically and sequentially at intervals in the order of APRR9-->APRR7-->APRR5-->APRR3-->APRR1/TOC1, under the conditions of continuous light. Nevertheless, no evidence has been provided that each member of the APRR1/TOC1 quintet, except for APRR1/TOC1, is indeed relevant to the mechanisms underlying circadian rhythms. Here we attempt to provide such evidence by characterizing transgenic plants that aberrantly (or constitutively) express the APRR9 gene in a manner independent of circadian rhythms. The resulting APRR9-ox plants showed intriguing phenotypes with regard to circadian rhythms, in two aspects. First, the aberrant expression of APRR9 resulted in a characteristic phenotype with regard to transcriptional events, in which short-period rhythms were commonly observed for certain circadian-regulated genes, including CCA1, LHY, APRR1/TOC1, other APRR1/TOC1 members, ELF3, and CAB2. With regard to biological consequences, such APRR9-ox plants flowered much earlier than wild-type plants, in a manner independent of photoperiodicity (or under short-day conditions). These results suggest that APRR9 (and perhaps other members of the APRR1/TOC1 quintet) must also be taken into consideration for a better understanding of the molecular mechanisms underlying circadian rhythms, and also underlying control of the flowering time through the photoperiodic long-day pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.