Abstract

The CTTN gene (formerly designated EMS1), encodes cortactin, a key regulator of dynamic actin networks. Both CTTN and CCND1, the latter encoding the cell cycle regulator cyclin D1, reside at chromosomal locus 11q13, a region commonly amplified in breast cancers and head and neck squamous cell carcinoma (HNSCC). Previously, we identified a novel role for cortactin in cancer cells, whereby cortactin overexpression attenuated ligand-induced down-regulation of the epidermal growth factor (EGF) receptor (EGFR), leading to sustained signaling. However, how this affected growth factor-induced cellular responses was unclear. Here, by modulation of cortactin expression in a panel of HNSCC cell lines, we show that cortactin overexpression enhances serum- and EGF-stimulated proliferation under both anchorage-dependent and anchorage-independent conditions and also increases resistance to anoikis (detachment-induced apoptosis). These effects are associated with increased activation of extracellular signal-regulated kinase and/or AKT. Furthermore, we report that cortactin stabilizes the c-MET receptor tyrosine kinase and enhances hepatocyte growth factor-induced mitogenesis and cell scattering. Therefore, cortactin may modulate signaling by a broader range of receptors than originally proposed and thereby affect a variety of responses. Finally, we have determined that cortactin overexpression, either alone or in combination with cyclin D1 up-regulation, promotes resistance to the EGFR kinase inhibitor gefitinib. These findings indicate that cortactin may play multiple roles in progression of HNSCC and should be evaluated as a marker of prognosis, disease progression, and therapeutic responsiveness, particularly to EGFR-directed agents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.