Abstract

BackgroundFatal neurodegenerative disorders such as Creutzfeldt-Jakob and Gerstmann-Sträussler-Scheinker diseases in humans, scrapie and bovine spongiform encephalopathy in animals, are characterized by the accumulation in the brain of a pathological form of the prion protein (PrP) denominated PrPSc. The latter derives from the host cellular form, PrPC, through a process whereby portions of its α-helical and coil structures are refolded into β-sheet structures.ResultsIn this work, the widely known in vitro model of prion replication, hypothalamic GT1-1 cell line, was used to investigate cellular and molecular responses to prion infection. The MAP kinase cascade was dissected to assess the phosphorylation levels of src, MEK 1/2 and ERK 1/2 signaling molecules, both before and after prion infection. Our findings suggest that prion replication leads to a hyper-activation of this pathway. Biochemical analysis was complemented with immunofluorescence studies to map the localization of the ERK complex within the different cellular compartments. We showed how the ERK complex relocates in the cytosol upon prion infection. We correlated these findings with an impairment of cell growth in prion-infected GT1-1 cells as probed by MTT assay. Furthermore, given the persistent urgency in finding compounds able to cure prion infected cells, we tested the effects on the ERK cascade of two molecules known to block prion replication in vitro, quinacrine and Fab D18. We were able to show that while these two compounds possess similar effects in curing prion infection, they affect the MAP kinase cascade differently.ConclusionsTaken together, our results help shed light on the molecular events involved in neurodegeneration and neuronal loss in prion infection and replication. In particular, the combination of chronic activation and aberrant localization of the ERK complex may lead to a lack of essential neuroprotective and survival factors. Interestingly, these data seem to define some common traits with other neurodegenerative disorders such as, for example, Alzheimer's disease.

Highlights

  • Fatal neurodegenerative disorders such as Creutzfeldt-Jakob and Gerstmann-Sträussler-Scheinker diseases in humans, scrapie and bovine spongiform encephalopathy in animals, are characterized by the accumulation in the brain of a pathological form of the prion protein (PrP) denominated scrapie isoform of PrP (PrPSc)

  • To investigate the response of neurons towards prion infection we chose, as a model of prion replication, an immortalized murine cell line derived from hypothalamic cells either uninfected or chronically infected with Rocky Mountain Lab (RML) prion strain (GT1 cells and scrapie-infected GT1 (ScGT1) cells respectively, hereafter)

  • In order to elucidate some of the mechanisms leading to neuronal loss we focused on MAP Kinase pathways, given their pivotal role in cell growth and survival

Read more

Summary

Introduction

Fatal neurodegenerative disorders such as Creutzfeldt-Jakob and Gerstmann-Sträussler-Scheinker diseases in humans, scrapie and bovine spongiform encephalopathy in animals, are characterized by the accumulation in the brain of a pathological form of the prion protein (PrP) denominated PrPSc. Fatal neurodegenerative disorders such as Creutzfeldt-Jakob and Gerstmann-Sträussler-Scheinker diseases in humans, scrapie and bovine spongiform encephalopathy in animals, are characterized by the accumulation in the brain of a pathological form of the prion protein (PrP) denominated PrPSc The latter derives from the host cellular form, PrPC, through a process whereby portions of its a-helical and coil structures are refolded into b-sheet structures. TSE can manifest as spontaneous, inherited and infectious maladies. These diseases are caused by the accumulation of prions in the central nervous system (CNS). Despite PrPC being conserved amongst mammals, its function is still ambiguous and defining the cellular processes involved in prion disease remains one of the main challenges in

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call