Abstract
BackgroundEpigenetics has been recognized as a significant regulator in many diseases. White adipose tissue (WAT) epigenetic dysregulation is associated with systemic insulin resistance (IR). The aim of this study was to survey the differential methylation of genes in obese women with systemic insulin resistance by DNA methylation microarray.MethodsThe genome-wide methylation profile of systemic insulin resistant obese women was obtained from Gene Expression Omnibus database. After data preprocessing, differing methylation patterns between insulin resistant and sensitive obese women were identified by Student’s t-test and methylation value differences. Network analysis was then performed to reveal co-regulated genes of differentially methylated genes. Functional analysis was also implemented to reveal the underlying biological processes related to systemic insulin resistance in obese women.ResultsRelative to insulin sensitive obese women, we initially screened 10,874 differentially methylated CpGs, including 7402 hyper-methylated sites and 6073 hypo-methylated CpGs. Our analysis identified 4 significantly differentially methylated genes, including SMYD3, UST, BCL11A, and BAI3. Network and functional analyses found that these differentially methylated genes were mainly involved in chondroitin and dermatan sulfate biosynthetic processes.ConclusionBased on our study, we propose several epigenetic biomarkers that may be related to obesity-associated insulin resistance. Our results provide new insights into the epigenetic regulation of disease etiology and also identify novel targets for insulin resistance treatment in obese women.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.