Abstract

ObjectiveImpaired cognitive function is a central symptom of schizophrenia and is often correlated with inferior global functional outcomes. However, the role of some neurobiological factors such as cortical structure alterations in the underlying cognitive damages in schizophrenia remains unclear. The present study attempted to explore the neurobiomarkers of cognitive function in drug-naive, first-episode schizophrenia by using structural magnetic resonance imaging (MRI).MethodsThe present study was conducted in patients with drug-naive, first-episode schizophrenia (SZ) and healthy controls (HCs). MRI T1 images were pre-processed using CAT12. Surface-based morphometry (SBM) was utilised to evaluate structural parameters such as cortical thickness and sulcus depth. The positive and negative syndrome scale (PANSS) and Chinese version of the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) consensus cognitive battery (MCCB) were employed to estimate the psychotic symptoms and cognition, respectively.ResultsA total of 117 patients with drug-naive first-episode schizophrenia (SZ) and 98 healthy controls (HCs) were included. Both the cortical thickness and sulcus depth in the frontal lobe were lower in patients with SZ than in the HCs under family-wise error correction (p < 0.05). Attention and visual learning in MCCB were positively correlated with the right lateral orbitofrontal cortical thickness in the patients with SZ (p < 0.01).ConclusionsThe reduced surface value of multiple cortical structures, particularly the cortical thickness and sulcus depth in the frontal lobe, could be the potential biomarkers for cognitive impairment in SZ.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call