Abstract

Neuroimaging studies investigating the behavioral and psychological symptoms of dementia (BPSD)- such as apathy, anxiety, and depression- have linked some of these symptoms with altered neural activity. However, inconsistencies in operational definitions and rating scales, limited scope of assessments, and poor temporal resolution of imaging techniques have hampered human studies. Many transgenic (Tg) mouse models of Alzheimer's disease (AD) exhibit BPSD-like behaviors concomitant with AD-related neuropathology, allowing examination of how neural activity may relate to BPSD-like behaviors with high temporal and spatial resolution. To examine task-dependent neural activity in the medial prefrontal cortex (mPFC) of AD-model mice in response to social and non-social olfactory stimuli. We previously demonstrated age-related decreases in social investigation in Tg 5xFAD females, and this reduced social investigation is evident in Tg 5xFAD females and males by 6 months of age. In the present study, we examine local field potential (LFP) in the mPFC of awake, behaving 5xFAD females and males at 6 months of age during exposure to social and non-social odor stimuli in a novel olfactometer. Our results indicate that Tg 5xFAD mice exhibit aberrant baseline and task-dependent LFP activity in the mPFC- including higher relative delta (1-4 Hz) band power and lower relative power in higher bands, and overall stronger phase-amplitude coupling- compared to wild-type controls. These results are consistent with previous human and animal studies examining emotional processing, anxiety, fear behaviors, and stress responses, and suggest that Tg 5xFAD mice may exhibit altered arousal or anxiety.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.