Abstract

The role of the transcription factor NF-κB in shaping the cancer microenvironment is becoming increasingly clear. Inflammation alters the activity of enzymes that modulate NF-κB function, and causes extensive changes in genomic chromatin that ultimately drastically alter cell-specific gene expression. NF-κB regulates the expression of cytokines and adhesion factors that control interactions among adjacent cells. As such, NF-κB fine tunes tissue cellular composition, as well as tissues' interactions with the immune system. Therefore, NF-κB changes the cell response to hormones and to contact with neighboring cells. Activating NF-κB confers transcriptional and phenotypic plasticity to a cell and thereby enables profound local changes in tissue function and composition. Research suggests that the regulation of NF-κB target genes is specifically altered in cancer. Such alterations occur not only due to mutations of NF-κB regulatory proteins, but also because of changes in the activity of specific proteostatic modules and metabolic pathways. This article describes the molecular mode of NF-κB regulation with a few characteristic examples of target genes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.