Abstract

BackgroundThe ability to generate a precise internal model of statistical regularities is impaired in schizophrenia. Predictive coding accounts of schizophrenia suggest that psychotic symptoms may be explained by a failure to build precise beliefs or a model of the world. The precision of this model may vary with context. For example, in a noisy environment the model will be more imprecise compared to a model built in an environment with lower noise. However compelling, this idea has not yet been empirically studied in schizophrenia. Methods: In this study, 62 participants engaged in a stochastic mismatch negativity paradigm with high and low precision. We included inpatients with a schizophrenia spectrum disorder (N = 20), inpatients with a psychiatric disorder but without psychosis (N = 20), and healthy controls (N = 22), with comparable sex ratio and age distribution. Bayesian mapping and dynamic causal modelling were employed to investigate the underlying microcircuitry of precision encoding of auditory stimuli. Results: We found strong evidence (exceedance P > 0.99) for differences in the underlying connectivity associated with precision encoding between the three groups as well as on the continuum of psychotic-like experiences assessed across all participants. Critically, we show changes in interhemispheric connectivity between the two inpatient groups, with some connections further aligning on the continuum of psychotic-like experiences. Conclusions: While our results suggest continuity in backward connectivity alterations with psychotic-like experiences regardless of diagnosis, they also point to specificity for the schizophrenia spectrum disorder group in interhemispheric connectivity alterations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call