Abstract

Na+/Ca2+ exchangers (NCXs) are mainly expressed in the plasma membrane and exchange one Ca2+ for three Na+, depending on the electrochemical gradients across the plasma membrane. NCXs have three isoforms, NCX1-3, encoded by distinct genes in mammals. Here, we report that heterozygous mice lacking NCX1 (NCX1+/-) exhibit impaired amygdala-dependent cued fear memory. NCX1+/- mice showed significant impairment in fear-related behaviors measured with the elevated-plus maze, light-dark, open-field, and marble-burying tasks. In addition, NCX1+/- mice showed abnormality in cued fear memory but not in contextual fear memory in a fear-conditioning task. In immunohistochemical analyses, NCX1+/- mice had significantly increased number of c-Fos-positive cells in the lateral amygdala (LA) but not in the central amygdala following fear-related tone stimuli. c-Fos expression peaked at 1h. In concordance with the aberrant fear-related behaviors in NCX1+/- mice, enhanced long-term potentiation was also observed in the LA of these mice. Furthermore, enhancement of CaMKII or CaMKIV activity in the LA was observed in NCX1+/- mice by immunoblot analyses. In contrast, CaMKII+/- but not CaMKIV-/- mice insufficiently exhibited tone-induced cued fear memory and there was no increase in the number of c-Fos-positive cells in the LA. Altogether, the increased CaMKII activity and consequent c-Fos expression likely account for the dysregulation of amygdala-dependent cued fear memory in NCX1+/- mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.