Abstract

Forkhead box M1 (FOXM1) is a proliferation-associated transcription factor essential for cell cycle progression. Numerous studies have documented that FOXM1 has multiple functions in tumorigenesis and its elevated levels are frequently associated with cancer progression. Here, we characterized the role of ERK/FOXM1 signaling in mediating the metastatic potential of ovarian cancer cells. Immunohistochemical (IHC), immunoblotting and semi-quantitative RT-PCR analyses found that both phospho-ERK and FOXM1 were frequently upregulated in ovarian cancers. Intriguingly, the overexpressed phospho-ERK (p<0.001) and FOXM1 (p<0.001) were significantly correlated to high-grade ovarian tumors with aggressive behavior such as metastasized lymph node (5 out of 6). Moreover, the expressions of phospho-ERK and FOXM1 had significantly positive correlation (p<0.001). Functionally, ectopic expression of FOXM1B remarkably enhanced cell migration/invasion, while FOXM1C not only increased cell proliferation but also promoted cell migration/invasion. Conversely, inhibition of FOXM1 expression by either thiostrepton or U0126 could significantly impair FOXM1 mediated oncogenic capacities. However, the down-regulation of FOXM1 by either thiostrepton or U0126 required the presence of p53 in ovarian cancer cells. Collectively, our data suggest that over-expression of FOXM1 might stem from the constitutively active ERK which confers the metastatic capabilities to ovarian cancer cells. The impairment of metastatic potential of cancer cells by FOXM1 inhibitors underscores its therapeutic value in advanced ovarian tumors.

Highlights

  • Ovarian cancer is one of the most lethal gynecologic malignancies worldwide

  • We have showed that Forkhead box M1 (FOXM1) was aberrantly upregulated in ovarian cancer, in high-grade sub-type

  • We proposed that FOXM1 overexpression might stem from constitutively activated ERK signaling that contributes to the metastatic capability in cancer cells

Read more

Summary

Introduction

Ovarian cancer is one of the most lethal gynecologic malignancies worldwide. Due to the non-specific symptoms, most of ovarian cancer cases are presented with advanced stage disease and associate with high mortality rate [1]. In the advanced ovarian cancer, tumor cells are highly invasive and the subsequent cancer metastasis leads to death [2]. Both cell migration and invasion contribute the metastatic ability of the tumor cells and the genetic mechanism that regulates metastasis remains largely unknown. The expression status and functional roles of FOXM1 in ovarian cancer, especially in cell migration/invasion are largely speculative. This highlights an urgent need to delineate the molecular mechanism underlying the cancer progression so as to increase the survival rate of patients with ovarian cancer

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call