Abstract
In this paper, we prove a kind of Abelian theorem for a class of stochastic volatility models (X,V) where both the state process X and the volatility process V may have jumps. Our results relate the asymptotic behavior of the characteristic function of XΔ for some Δ>0 in a stationary regime to the Blumenthal–Getoor indexes of the Lévy processes driving the jumps in X and V. The results obtained are used to construct consistent estimators for the above Blumenthal–Getoor indexes based on low-frequency observations of the state process X. We derive convergence rates for the corresponding estimator and show that these rates cannot be improved in general.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.