Abstract

The paper is concerned with a $\sigma$-finite measure $U$ concentrated in the positive orthant $\mathbf{R}^n_+=[0,\infty)^n$ such that there exists the Laplace transform $\widetilde{U}(\lambda)$ for $\lambda\in\operatorname{int} \mathbf{R}^n_+$. Let functions $R(t)>0$ and $b(t)=(b_1(t),\dots,b_n(t))\in\operatorname{int} \mathbf{R}^n_+$ for $t\geq0$ be such that $R(t)\to\infty$, $b_i(t)\to\infty$ for any $i=1,\dots,n$. Under certain assumptions on these functions, the weak convergence of the measures $U(b(t)\,{\cdot}\,)/R(t)$ to $\Phi{(\,\cdot\,)}$ as $t\to\infty$ is shown to imply the convergence $\widetilde{U}(\lambda/b(t))\to\widetilde{\Phi}(\lambda)<\infty$ for any $\lambda\in\operatorname{int} \mathbf{R}^n_+$ ($t\to\infty$) (the multiplication and division of vectors are defined componentwise). A function $f\colon \mathbf{R}_+^n\to \mathbf{R}_+$ is said to be regularly varying at infinity in $\mathbf{R}_+^n$ along $b(t)$ if $f(b(t)x(t))/f(b(t))\to\varphi(x)\in(0,\infty)$ as $t\to\infty$ for all $x$, $x(t) \in \mathbf{R}_+^n\setminus\{0\}$ such that $ x(t)\to x$. Sufficient conditions are given for such functions to give $\widehat{f}(\lambda/b(t))\equiv\widetilde{U}(\lambda/b(t)) \to\widehat{\phi}(\lambda)\equiv\widetilde{\Phi}(\lambda)<\infty$ for any $\lambda\in\operatorname{int} \mathbf{R}^n_+$\enskip ($t\to\infty$) for $U(dx)=f(x)\,dx$, $\Phi(dx)=\varphi(x)\,dx$. The Abelian theorem obtained here is applied at the end of the paper to investigate the limit behavior of multiple power series distributions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call