Abstract
For Abelian p-groups, Goldsmith, Salce, et al., introduced the notion of minimal full inertia. In parallel to this, we define the concept of minimal characteristic inertia and explore those p-primary Abelian groups having minimal characteristic inertia. We establish the surprising result that, for each Abelian p-group A, the square has the minimal characteristic inertia if, and only if, it has the minimal full inertia. We also obtain some other relationships between these two properties. Specifically, we exhibit groups which do not have neither of the properties, as well as we show via a concrete complicated construction by using some nonstandard tricks from ring theory and module theory that, for any prime p, there is a p-group possessing the minimal characteristic inertia which does not possess the minimal full inertia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.