Abstract
The following are equivalent for a skeletally small abelian Hom-finite category over a field with enough injectives and each simple object being an epimorphic image of a projective object of finite length. (a) Each indecomposable injective has a simple subobject. (b) The category is equivalent to the category of socle-finitely copresented right comodules over a right semiperfect and right cocoherent coalgebra such that each simple right comodule is socle-finitely copresented. (c) The category has left almost split sequences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.