Abstract

We apply total-variation (TV) regularization methods to Abel inversion tomography. Inversions are performed using the fixed-point iteration method and the regularization parameter is chosen such that the resulting data fidelity approximates the known or estimated statistical character of the noisy data. Five one-dimensional (1D) examples illustrate the favorable characteristics of TV-regularized solutions: noise suppression and density discontinuity preservation. Experimental and simulated examples from X-ray radiography also illustrate limitations due to a linear projection approximation. TV-regularized inversions are shown to be superior to squared gradient (Tikhonov) regularized inversions for objects with density discontinuities. We also introduce an adaptive TV method that utilizes a modified discrete gradient operator acting only apart from data-determined density discontinuities. This method provides improved density level preservation relative to the basic TV method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.