Abstract
This paper presents an abductive reasoning network (ARN) for real-time fault section estimation in power systems. The proposed ARN handles complicated and knowledge-embedded relationships between the circuit breaker status (input) and the corresponding candidate fault section (output) using a hierarchical network with several layers of function nodes of simple low-order polynomials. The relay status is then further used to validate the final fault section. Test results confirm that the proposed diagnosis system can obtain rapid and accurate diagnosis results with flexibility and portability for diverse power system fault diagnosis. In addition, the proposed method performs better than the artificial neural networks (ANN) classification method both in developing the diagnosis system and in estimating the practical fault section. Moreover, this study demonstrates the feasibility of applying the proposed method to real power system fault diagnosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.