Abstract
Abduction is a kind of logical inference, and has been studied in computer science and artificial intelligence (Fin- lay and Dix 1996). Recently, Sawa and Gunji (2010) introduced a diagram to represent three types of inference: i.e. deduc- tion, induction, and abduction, which are articulated by C.S.Peirce. Sawa-Gunji’s representation provides a new approach to a numerical aspect of abduction. In the present paper, we show that Sawa-Gunji's representation of abduction is consistent with Finlay-Dix's one, and integrate the two representations. Both parameter estimation and abduction occupy a similar position on the integrated representation, although they are not completely corresponding. We present "incomplete" pa- rameter estimation as a sort of "simulated abduction", which is a numerical aspect of abduction. It is applied to a first-order autoregressive (AR(1)) model. As a result of numerical analyses on AR(1), the incompletely estimated parameter (IEP) follows a Cauchy distribution, which has a power law of the slope -2 in the tail, although conventionally estimated parameter is normally distributed. It is shown that the Cauchy distribution of the IEP is based on structure of ratio distribution of normal random variables generated from the AR(1). This research suggests that the distribution of the IEP is not based on a mech- anism of system itself, but on relationship between data structure on the given system (i.e. the given AR(1) process) and one on the system observer (i.e. the estimator of the AR(1) parameter).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: tripleC: Communication, Capitalism & Critique. Open Access Journal for a Global Sustainable Information Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.