Abstract

BackgroundDeep inspiration breath hold (DIBH) can be performed using different breathing maneuvers, such as DIBH with a thoracic breathing maneuver (T-DIBH) and DIBH with an abdominal breathing maneuver (A-DIBH). Dosimetric benefits of A-DIBH were investigated in the treatment of left-sided breast cancer radiotherapy (RT) with both 3-Dimensional conformal radiation therapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) techniques.MethodsTwenty-two patients with left-sided breast cancer were enrolled in this study. 3D-CRT and IMRT plans were generated for each patient with three different CT scans of free breathing (FB), T-DIBH and A-DIBH. There were total of six treatment plans generated for each patient: FB_3D-CRT; TDIBH_3D-CRT; ADIBH_3D-CRT; FB-IMRT; TDIBH-IMRT; ADIBH-IMRT. Doses to the heart, left anterior descending coronary artery (LADCA), and ipsilateral lung were evaluated and compared using the Wilcoxon signed-rank test.ResultsThe mean doses to the heart, LADCA and ipsilateral lung in 3D-CRT plans generated from 3D-CRT with FB, T-DIBH and A-DIBH were (2.89 ± 1.30), (1.67 ± 0.90) and (1.34 ± 0.43) Gy (all P < 0.05), respectively, with FB; (29.08 ± 16.72), (13.94 ± 14.74) and (10.22 ± 10.30) Gy (all P < 0.05), respectively, with T-DIBH; and (7.77 ± 2.71), (7.32 ± 1.42) and (6.90 ± 1.60) Gy (all P < 0.05), respectively, with A-DIBH. The mean doses to the heart, LADCA and ipsilateral lung in IMRT plans were generated from IMRT with FB, T-DIBH and A-DIBH were (1.96 ± 2.25), (1.37 ± 0.44) and (1.18 ± 0.26) Gy (all P < 0.05), respectively, with FB; (16.10 ± 7.45), (8.6 ± 6.60) and (7.35 ± 5.42) Gy (all P < 0.05), respectively, with T-DIBH; and (5.90 ± 2.24), (5.65 ± 1.58) and (5.62 ± 1.05) Gy (all P > 0.05), respectively, with A-DIBH.ConclusionsThis study indicates that both 3D-CRT and IMRT plans with A-DIBH achieved lower cardiac and LADCA doses than plans with FB and T-DIBH; 3D-CRT plans with A-DIBH achieved lower ipsilateral lung doses than plans with FB and T-DIBH; and IMRT plans with A-DIBH had better outcomes than 3D-CRT plans with A-DIBH with respect to the mean dose to the heart, LADCA and ipsilateral lung. IMRT plans with A-DIBH should be incorporated into the daily routine for left-sided breast RT.

Highlights

  • Deep inspiration breath hold (DIBH) can be performed using different breathing maneuvers, such as DIBH with a thoracic breathing maneuver (T-DIBH) and DIBH with an abdominal breathing maneuver (A-DIBH)

  • intensity-modulated radiotherapy (IMRT) plans with A-DIBH should be incorporated into the daily routine for left-sided breast RT

  • The heart, left main coronary artery (LMCA), and left anterior descending coronary artery (LADCA) moved farther caudally during A-DIBH than during T-DIBH. Both DIBH techniques increased the distance between the heart and the breast clinical target volume (CTV) compared with free breathing (FB)

Read more

Summary

Introduction

Deep inspiration breath hold (DIBH) can be performed using different breathing maneuvers, such as DIBH with a thoracic breathing maneuver (T-DIBH) and DIBH with an abdominal breathing maneuver (A-DIBH). Dosimetric benefits of A-DIBH were investigated in the treatment of left-sided breast cancer radiotherapy (RT) with both 3-Dimensional conformal radiation therapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) techniques. Darby et al [8] estimated a relative 7.4% increase in the rate of major coronary events per 1 Gy increase in the mean radiation dose to the heart among patients with breast cancer receiving adjuvant RT from 1958 to 2001. In recent years, a large effort has been made to develop techniques to shield the heart and minimize the heart and LADCA doses. These techniques include deep inspiration breath hold (DIBH), intensity-modulated radiation therapy (IMRT) techniques, treatment in the prone position, and proton therapy. As reported [10,11,12,13,14,15,16,17,18], the DIBH technique increases the spatial separation between the heart and the target volume and decreases the volume of the heart within the irradiated field, resulting in a reduction of the cardiac dose without compromising the target coverage

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.