Abstract

Objective:Favorable effects of walking levels on glycemic control have been hypothesized to be mediated through reductions in abdominal adiposity, but this has not been well studied. We addressed this issue in patients treated for type 2 diabetes.Design:Cross-sectional analysis.Subjects:A total of 201 subjects with type 2 diabetes underwent assessments of pedometer-measured daily step counts, blood pressure, A1C and anthropometric measures (2006–2010). Associations of anthropometric indicators of abdominal adiposity (that is, waist circumference; waist-to-hip ratio (WHR)) with A1C were evaluated through linear regression models adjusting for age, ethnicity, sex and the use of insulin and oral hypoglycemic agents. Models including waist circumference were additionally adjusted for body mass index (BMI). A similar approach was used to examine A1C and daily step associations.Results:Among the 190 subjects (mean age 60 years; mean BMI 30.4 kg m−2), mean values (s.d.) for waist circumference and WHR were respectively, 99.1 cm (13.3) and 0.88 (0.07) in women, and 104.5 cm (13.1) and 0.97 (0.06) in men. Mean A1C and daily step count were respectively, 7.6% (1.4) and 5 338 steps per day (2609), and were similar for both sexes.There was a 0.51% (95% confidence interval (CI): 0.10, 0.93) A1C increment per s.d. increase in waist circumference and a 0.32% (95% CI: 0.08, 0.56) A1C increment per s.d. increase in WHR in fully adjusted models. Each s.d. increase in daily step count was associated with clinically significant reductions in waist circumference and BMI. Each s.d. increase in daily steps was associated with a 0.21% (95% CI: 0.02, 0.41) A1C decrement that declined to 0.16% (95% CI: −0.35, 0.04) with further adjustment for anthropometric indicators of abdominal adiposity.Conclusion:Higher daily steps may be associated with lower A1C values both directly and via changes in abdominal adiposity.

Highlights

  • The development of diabetes has been shown to be associated with an increase in visceral or intra-abdominal adipose tissue, a decrease in s.c. adipose tissue and a loss of muscle mass.[1]

  • There was a greater prevalence of insulin use in the higher quartiles of A1C (Table 1), and the mean waist-to-hip ratio (WHR) and body mass index (BMI) were higher in the fourth compared with the first quartile of A1C, among the women

  • In models adjusting for age, ethnicity, sex, insulin use and the number of oral hypoglycemic agents being used, each s.d. increase in daily step counts was associated with a 0.21%. lower A1C (Table 4)

Read more

Summary

OBJECTIVE

Favorable effects of walking levels on glycemic control have been hypothesized to be mediated through reductions in abdominal adiposity, but this has not been well studied. We addressed this issue in patients treated for type 2 diabetes. Each s.d. increase in daily step count was associated with clinically significant reductions in waist circumference and BMI. Each s.d. increase in daily steps was associated with a 0.21% (95% CI: 0.02, 0.41) A1C decrement that declined to 0.16% (95% CI: À0.35, 0.04) with further adjustment for anthropometric indicators of abdominal adiposity. Nutrition and Diabetes (2012) 2, e25; doi:10.1038/nutd.2011.22; published online 16 January 2012

INTRODUCTION
Study design and population
Statistical methods
RESULTS
DISCUSSION

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.