Abstract

Furanocoumarins derived from herbal and citrus extracts can act as antibacterial, antioxidant, immunomodulator, apoptotic, and selective anticancer agents, prompting a biological investigation to determine and predict their clinical therapeutic significance. Here, the cell cytotoxic effects of bergapten and xanthotoxin were analyzed alone and in combination with standard chemotherapeutics on three multidrug resistant cells and their nonresistant parental counterparts. The furanocoumarins modulatory effects on MDR1, BCRP, and MRP pump expression and function were investigated. Although quantitative real time PCR demonstrated that the MDR transcript level changes in a time dependent manner, flow cytometric analyses using fluorescent-labeled antibodies have indicated that bergapten and xanthotoxin had no significant effect on the protein levels. FACS analyses indicated that these prominent anticancer agents significantly blocked MDR1, BCRP, and MRP transporter function. Maximum furanocoumarin-mediated pump activity blockage in the MDR-resistant cells was quantified as 87% of normal and consequently, chemotherapeutic accumulation increased up to 2.7-fold and cytotoxicity tension increased 104-fold. MDR1 efflux kinetics also revealed that the maximum velocity and the pump affinity to daunorubicin were uncompetitively decreased. We conclude that bergapten and xanthotoxin are cytotoxic agents capable of preventing daunorubicin, mitoxantrone, and cisplatin binding to ABC-transporters and subsequently inhibiting their efflux out of cells and they may be a potential combination therapy for malignant cancers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call