Abstract

Here, we describe the initial characterization of Abcg4(-/-) mice and identify overlapping functions of ABCG4 and ABCG1 in the brain. Histological examination of tissues from Abcg4(+/-)/nlsLacZ and Abcg1(+/-)/nlsLacZ mice demonstrates that coexpression of Abcg4 and Abcg1 is restricted to neurons and astrocytes of the central nervous system (CNS). Interestingly, Abcg4 mRNA is undetectable outside the CNS, in contrast with the broad tissue and cellular expression of Abcg1. We also used primary astrocytes, microglia, neurons, and macrophages to demonstrate that the expression of Abcg1, but not Abcg4, is induced after the activation of liver X receptor. Cellular localization studies demonstrated that both proteins reside in RhoB-positive endocytic vesicle membranes. Furthermore, overexpression of either ABCG1 or ABCG4 increased the processing of sterol-regulatory element binding protein 2 (SREBP-2) to the transcriptionally active protein, thus accounting for the observed increase in the expression of SREBP-2 target genes and cholesterol synthesis. Consistent with these latter results, we show that the expression levels of the same SREBP-2 target genes are repressed in the brains of Abcg1(-/-) and, to a lesser extent, Abcg4(-/-) mice. Based on the results of the current study, we propose that ABCG1 and ABCG4 mediate the intracellular vesicular transport of cholesterol/sterols within both neurons and astrocytes to regulate cholesterol transport in the brain.

Highlights

  • We describe the initial characterization of Abcg42/2 mice and identify overlapping functions of ABCG4 and ABCG1 in the brain

  • B-galactosidase tagged with a nuclear localization sequence is under the control of the endogenous promoter of either the Abcg1 or Abcg4 gene, allowing for facile identification of cells that express ABCG1 or ABCG4

  • We demonstrate that, ABCG1 is widely expressed in many tissues and cell types, coexpression of ABCG1 with ABCG4 is restricted to neurons and astrocytes

Read more

Summary

Introduction

We describe the initial characterization of Abcg42/2 mice and identify overlapping functions of ABCG4 and ABCG1 in the brain. Histological examination of tissues from Abcg41/2/nlsLacZ and Abcg11/2/nlsLacZ mice demonstrates that coexpression of Abcg and Abcg is restricted to neurons and astrocytes of the central nervous system (CNS). Overexpression of either ABCG1 or ABCG4 increased the processing of sterol-regulatory element binding protein 2 (SREBP-2) to the transcriptionally active protein, accounting for the observed increase in the expression of SREBP-2 target genes and cholesterol synthesis. Consistent with these latter results, we show that the expression levels of the same SREBP-2 target genes are repressed in the brains of Abcg12/2 and, to a lesser extent, Abcg42/2 mice.

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call