Abstract
This paper shows under what condition the well-knownABCD law — which can be applied to describe the propagation of one-dimensional Gaussian light through first-order optical systems (orABCD systems) — can be extended to more than one dimension. It is shown that in the two-dimensional (or higher-dimensional) case anABCD law only holds for partially coherent Gaussian light for which the matrix of second-order moments of the Wigner distribution function is proportional to a symplectic matrix. Moreover, it is shown that this is the case if we are dealing with a special kind of Gaussian Schell model light, for which the real parts of the quadratic forms that arise in the exponents of the Gaussians are described by the same real, positive-definite symmetric matrix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.