Abstract

Background In a previous publication, we showed that the ABCC11 transporter is crucial for the formation of the characteristic axillary odor and that a 538G>A single nucleotide polymorphism (SNP) in the gene, prominent in Asians, leads to a nearly complete loss of the typical sweat odor components in these carriers. As it is unclear, whether ABCC11 is directly involved in the transport of these components, we performed ABCC11-mediated transporter experiments with various potential odor precursors and also studied possible pathways for the formation of these precursors.

Highlights

  • In a previous publication, we showed that the ABCC11 transporter is crucial for the formation of the characteristic axillary odor and that a 538G>A single nucleotide polymorphism (SNP) in the gene, prominent in Asians, leads to a nearly complete loss of the typical sweat odor components in these carriers

  • As GGT1 is an enzyme which is known to catalyze the deglutamylation of glutathionyl-conjugates, we suggested that GGT1 is capable of transforming the SG-3M3SH to Cys-Gly-3M3SH

  • To sum up, we demonstrate that the functionality of ABCC11 is likely to play an important role in the generation of axillary malodor

Read more

Summary

Introduction

We showed that the ABCC11 transporter is crucial for the formation of the characteristic axillary odor and that a 538G>A single nucleotide polymorphism (SNP) in the gene, prominent in Asians, leads to a nearly complete loss of the typical sweat odor components in these carriers. From 1st International Workshop on Odor Spaces Hannover, Germany. Background In a previous publication, we showed that the ABCC11 transporter is crucial for the formation of the characteristic axillary odor and that a 538G>A single nucleotide polymorphism (SNP) in the gene, prominent in Asians, leads to a nearly complete loss of the typical sweat odor components in these carriers.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.