Abstract
The ATP-binding cassette (ABC) reporter family functions to regulate the homeostasis of phospholipids and cholesterol in the central nervous system, as well as peripheral tissues. ABCA7 belongs to the A subfamily of ABC transporters, which shares 54% sequence identity with ABCA1. While ABCA7 is expressed in a variety of tissues/organs, including the brain, recent genome-wide association studies (GWAS) have identified ABCA7 gene variants as susceptibility loci for late-onset Alzheimer’s disease (AD). More important, subsequent genome sequencing analyses have revealed that premature termination codon mutations in ABCA7 are associated with the increased risk for AD. Alzheimer’s disease is a progressive neurodegenerative disease and the most common cause of dementia, where the accumulation and deposition of amyloid-β (Aβ) peptides cleaved from amyloid precursor protein (APP) in the brain trigger the pathogenic cascade of the disease. In consistence with human genetic studies, increasing evidence has demonstrated that ABCA7 deficiency exacerbates Aβ pathology using in vitro and in vivo models. While ABCA7 has been shown to mediate phagocytic activity in macrophages, ABCA7 is also involved in the microglial Aβ clearance pathway. Furthermore, ABCA7 deficiency results in accelerated Aβ production, likely by facilitating endocytosis and/or processing of APP. Taken together, current evidence suggests that ABCA7 loss-of-function contributes to AD-related phenotypes through multiple pathways. A better understanding of the function of ABCA7 beyond lipid metabolism in both physiological and pathological conditions becomes increasingly important to explore AD pathogenesis.
Highlights
Alzheimer’s disease (AD) is the leading cause of dementia in the elderly, accounting for 60–80% of cases
Since the discovery of ABCA7 gene variants as susceptibility loci of AD from human genetics studies, a better understanding of the roles of ABCA7 in the central nervous system has been of high significance to explore the pathogenic pathways in AD
As premature termination codon (PTC) variants in ABCA7 are associated with an increased risk for AD, subsequent studies have proven that ABCA7 deficiency exacerbates brain Aβ accumulation and AD-related phenotype using in vitro and in vivo models
Summary
Alzheimer’s disease (AD) is the leading cause of dementia in the elderly, accounting for 60–80% of cases. 5.5 million individuals are living with Alzheimer’s dementia in the United States This number is estimated to increase continuously due to the expansion of the aged population [1]. A small population size (
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.