Abstract

The generation of high-density lipoprotein (HDL), one of the most critical events for preventing atherosclerosis, is mediated by ATP-binding cassette protein A1 (ABCA1). ABCA1 is known to transfer cellular cholesterol and phospholipids to apolipoprotein A-I (apoA-I) for generating discoidal HDL (dHDL) particles, composed of 100-200 lipid molecules surrounded by two apoA-I molecules; however, the regulatory mechanisms are still poorly understood. Here we observed ABCA1-GFP and apoA-I at the level of single molecules on the plasma membrane via a total internal reflection fluorescence microscope. We found that about 70% of total ABCA1-GFP spots are immobilized on the plasma membrane and estimated that about 89% of immobile ABCA1 molecules are in dimers. Furthermore, an ATPase-deficient ABCA1 mutant failed to be immobilized or form a dimer. We found that the lipid acceptor apoA-I interacts with the ABCA1 dimer to generate dHDL and is followed by ABCA1 dimer-monomer interconversion. This indicates that the formation of the ABCA1 dimer is the key for apoA-I binding and nascent HDL generation. Our findings suggest the physiological significance of conversion of the ABCA1 monomer to a dimer: The dimer serves as a receptor for two apoA-I molecules for dHDL particle generation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call