Abstract

Cannabidiol (CBD) is currently being investigated as a novel therapeutic for the treatment of CNS disorders like schizophrenia and epilepsy. ABC transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) mediate pharmacoresistance in these disorders. P-gp and Bcrp are expressed at the blood brain barrier (BBB) and reduce the brain uptake of substrate drugs including various antipsychotics and anticonvulsants. It is therefore important to assess whether CBD is prone to treatment resistance mediated by P-gp and Bcrp. Moreover, it has become common practice in the drug development of CNS agents to screen against ABC transporters to help isolate lead compounds with optimal pharmacokinetic properties. The current study aimed to assess whether P-gp and Bcrp impacts the brain transport of CBD by comparing CBD tissue concentrations in wild-type (WT) mice versus mice devoid of ABC transporter genes. P-gp knockout (Abcb1a/b−∕−), Bcrp knockout (Abcg2−∕−), combined P-gp/Bcrp knockout (Abcb1a/b−∕−Abcg2−∕−) and WT mice were injected with CBD, before brain and plasma samples were collected at various time-points. CBD results were compared with the positive control risperidone and 9-hydroxy risperidone, antipsychotic drugs that are established ABC transporter substrates. Brain and plasma concentrations of CBD were not greater in P-gp, Bcrp or P-gp/Bcrp knockout mice than WT mice. In comparison, the brain/plasma concentration ratios of risperidone and 9-hydroxy risperidone were profoundly higher in P-gp knockout mice than WT mice. These results suggest that CBD is not a substrate of P-gp or Bcrp and may be free from the complication of reduced brain uptake by these transporters. Such findings provide favorable evidence for the therapeutic development of CBD in the treatment of various CNS disorders.

Highlights

  • Cannabidiol (CBD), a non-psychoactive constituent of cannabis, displays much potential as a novel therapeutic treatment for various CNS disorders including schizophrenia and epilepsy (Bumb, Enning & Leweke, 2015; Iseger & Bossong, 2015; Longo, Friedman & Devinsky, 2015)

  • This study shows that the ATPbinding cassette (ABC) transporters P-gp and breast cancer resistance protein (Bcrp) do not influence the brain uptake of CBD, a novel antipsychotic and anticonvulsant drug

  • P-gp, Bcrp and P-gp/Bcrp knockout mice did not accumulate greater brain or plasma concentrations of CBD compared to WT mice, nor were the brain/plasma concentration ratios of CBD influenced by knockout of the ABC transporter genes

Read more

Summary

Introduction

Cannabidiol (CBD), a non-psychoactive constituent of cannabis, displays much potential as a novel therapeutic treatment for various CNS disorders including schizophrenia and epilepsy (Bumb, Enning & Leweke, 2015; Iseger & Bossong, 2015; Longo, Friedman & Devinsky, 2015). There is promising evidence that CBD is a novel antipsychotic, with a phase 2 clinical trial showing CBD reduces symptoms in schizophrenia patients with comparable efficacy to a conventional antipsychotic drug without producing extrapyramidal side-effects, sedation or weight gain (Bumb, Enning & Leweke, 2015; Iseger & Bossong, 2015; Leweke et al, 2012). There are numerous other contenders as CBD is a promiscuous drug that interacts with multiple drug targets including G-protein-coupled receptor 55 (GPR55), transient receptor potential vanilloid type 1 (TRPV1) channels, and adenosine transporters (Leweke et al, 2012; McPartland et al, 2015; Rosenberg et al, 2015)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call