Abstract

Fish gills are a structurally and functionally complex organ at the interface between the organism and the aquatic environment. Gill functions include the transfer of organic molecules, both natural ones and xenobiotic compounds. Whether the branchial exchange of organic molecules involves active transporters is currently not known. Here, we investigated the presence, diversity and functional activity of ATP-binding cassette (ABC) transporters in gills of juvenile rainbow trout. By means of RT-qPCR, gene transcripts of members from the abcb, abcc and abcg subfamilies were identified. Comparisons with mRNA profiles from trout liver and kidney revealed that ABC transporters known to have an apical localization in polarized epithelia, especially abcc2 and abcb1, were under-represented in the gills. In contrast, ABC transporters with mainly basolateral localization showed comparable gene transcript levels in the three organs. The most prominent ABC transporter in gills was an abcb subfamily member, which was annotated as abcb5 based on the synteny and phylogeny. Functional in vivo assays pointed to a role of branchial ABC transporters in branchial solute exchange. We further assessed the utility of primary gill cell cultures to characterize transporter-mediated branchial exchange of organic molecules, by examining ABC transporter gene transcript patterns and functional activity in primary cultures. The gill cultures displayed functional transport activity, but the ABC mRNA expression patterns were different to those of the intact gills. Overall, the findings of this study provide evidence for the presence of functional ABC transporter activity in gills of fish.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.