Abstract
Inhibition of BCR-ABL tyrosine kinase activity has evolved as a mainstay of therapy for patients with chronic myeloid leukemia. However, a fraction of leukemic cells persists under targeted therapy and can lead to disease progression on cessation of treatment. We analyzed bone marrow progenitor cells with the side population phenotype, and characterized the role of the intracellular ABC transporter A3 in imatinib detoxification. BCR-ABL-positive leukemic cells contribute to the side population cell compartment in untreated patients. Such leukemic side population cells, as well as CD34-positive progenitors from chronic myeloid leukemia samples, strongly express the intracellular ABCA3. Functionally, ABCA3 levels are critical for the susceptibility of chronic myeloid leukemia blast cell lines to specific BCR-ABL inhibition by imatinib. The transporter is localized in the limiting membrane of lysosomes and multivesicular bodies, and intracellular [(14)C]-labeled imatinib accumulates in such organelles. The lysosomal storage capacity increases with ABCA3 expression, thus regulating imatinib sequestration. The intracellular ABC transporter A3 is expressed in chronic myeloid leukemia progenitor cells and may contribute to intrinsic imatinib resistance by facilitating lysosomal sequestration in chronic myeloid leukemia cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.