Abstract
The bilaterally symmetrical, feeding larval stage is an ancestral condition in echinoderms. However, many echinoderms have evolved abbreviated development and form a pentamerous juvenile without a feeding larva. Abbreviated development with a non-feeding vitellaria larva is found in five families of brittle stars, but very little is known about this type of development. In this study, the external anatomy, ciliary bands, neurons, and muscles were examined in the development of the brooded vitellaria larva of Ophioplocus esmarki. The external morphology throughout development shows typical vitellaria features, including morphogenetic movements to set up the vitellaria body plan, an anterior preoral lobe, a posterior lobe, transverse ciliary bands, and development of juvenile structures on the mid-ventral side. An early population of neurons forms at the base of the preoral lobe at the pre-vitellaria stage after the initial formation of the coelomic cavities. These early neurons may be homologous to the apical neurons that develop in echinoderms with feeding larval forms. Neurons form close to the ciliary bands, but the vitellaria larva lacks the tracts of neurons associated with the ciliary bands found in echinoderms with feeding larvae. Additional neurons form in association with the axial complex and persist into the juvenile stage. Juvenile nerves and muscles form with pentamerous symmetry in the late vitellaria stage in a manner similar to their development within the late ophiopluteus larva. Even though O. esmarki is a brooding brittle star, its developmental sequence retains the general vitellaria shape and structure; however, the vitellaria larvae are unable to swim in the water column.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.