Abstract

This study aims to investigate the influence of electromagnetic field on the distribution and composition of precipitates and on the mechanical properties of 7075 rolled sheets. The non-field and field microstructure and the mechanical properties were studied in detail by optical microscope (OM), electron probe microanalyzer (EPMA), multiple sample tensile as well as hardness tests. The Fine and equiaxed grains were obtained when introducing the alternating oscillating electromagnetic field to the twin-roll casting (TRC) process with 0.13T static magnetic and 386A alternating current (AC) intensities. Due to a damping effect on the convection generated by applying the electro- and static magnetic fields, the undercooling of the melt decreases and the continuous net-like precipitates are refined and broken remarkably. Especially under oscillating electromagnetic field conditions, the best uniform microstructure without mottled segregation was obtained. In addition, the fields can effectively enhance solute mixing capacity and reduce heat discharge, resulting in the increase of mechanical properties of 7075 sheets in both the longitudinal and long transverse directions. The optimum process in the present study, in which the higher solid solubility in Al matrix and the stronger hardness as well as tensile strength was gained as compared to other rolled specimens, is considered as alternating oscillating TRC process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.