Abstract
Population detonation and rapid industrialization are the major factors behind the reduction in cultivable land that affects crop production seriously. This situation is further being deteriorated due to the negative effects of abiotic stresses. Under such conditions, plant growth-promoting rhizobacteria (PGPR) are found to improve crop production which is essential for sustainable agriculture. This study is focused on the isolation of potent arsenic (As)-resistant PGPR from the agricultural land of West Bengal, India, and its application to reduce As translocation in rice seedlings. After screening, an As-resistant PGPR strain AS18 was identified by phenotypic characters and 16S rDNA sequence-based homology as Pantoea dispersa. This strain displayed nitrogen fixation, phosphate solubilization, 1-aminocyclopropane-1-carboxylic acid deaminase (ACCD) activity, indole-3-acetic acid (IAA) production, in addition to As (III) resistance up to 3750μg/mL. The As removal efficiency of this strain was up to 93.12% from the culture medium as evidenced by AAS. The bioaccumulation property of AS18 strain was further validated by TEM-EDAX-XRD-XRF-FTIR studies. This strain showed significant morpho-biochemical improvements including antioxidant enzymatic activities and As-minimization in plant (rice) cells. Thus, being an As-resistant potent PGPR, AS18 strain is expected to be applied in As-spiked agricultural fields for bioremediation and phytostimulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.