Abstract

This paper deals with the 3-methylbutanal ((CH3)2CHCH2COH) removal with the help of a nonthermal surface plasma discharge coupled with photocatalysis. The capability of this process for gas treatment was studied. A planar reactor system was developed in order to perform the effect of adding photocatalytic material in plasma surface discharge barrier dielectric (SDBD) zone on (i) 3-methylbutanal removal, (ii) selectivity of CO2 and CO, (iii) byproducts formation such ozone formation. It was found that the influence of the UV light generated by SDBD reactor was very low. The activation of the photocatalyst media could be negligible. Whereas, the introduction of external UV light to the process improves significantly the removal efficiency of 3-methylbutanal (3MBA) and the mineralization. A synergetic effect was observed by combining plasma SDBD and photocatalysis from all experiments and with other pollutant such as trimethylamine (N(CH3)3). Moreover, the byproducts of 3MBA were identified and evaluated with plasma SDBD, photocatalysis and plasma SDBD/photocatalysis combination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.