Abstract

橡胶垫隔震技术是减轻建筑结构在地面地震动激励下动力响应的有效措施,得到了日益广泛的工程应用。隔震的结构也由普通的低矮建筑拓展到一些复杂结构,如一些不规则的建筑场馆、桥梁,目前在高层建筑中也得到了应用。这对结构的动力响应分析提出了越来越高的要求,特别是对大型复杂结构,如何模拟橡胶垫的非线性特性,并结合到结构的有限元分析中,已成为影响橡胶垫隔震技术推广应用的一个关键问题。本文基于ABAQUS的二次开发平台,采用Bouc-Wen模型描述其水平恢复力的滞回特性,同时考虑竖向刚度的拉压异性,对橡胶垫隔震支座单元进行了二次开发,其中Bouc-Wen的参数可以根据需要进行合理的调节和设置,基于所开发的软件,对一个不规则结构进行了仿真分析,探索了隔震的影响效果。Rubber isolation technology is an effective means to mitigate the dynamic responses of a building under seismic excitations, now it has been applied widely in engineering, from those lower stiff buildings to some complicated structures, such as large scale irregular stadium, bridges, and even high rise buildings recently. Such trends lead to higher requirements for dynamics response ana- lysis, especially for those larger scale structure, the arisen key problem is how to simulate the nonlinear hysteresis property of the rubber bearing, and incorporate the programs in the finite element analysis. Based on the secondary development platform of ABAQUS, we program for the rubber bearing element, in which, the Bouc-Wen model is employed to describe the hysteresis be- havior in lateral, while the strength-differences of vertical stiffness are treated as well. An iregular building is simulated to investigate the effects of base isolation by using the developed program.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.