Abstract

Abamectin (ABA) is a macrocyclic lactone of the avermectin family used worldwide as an antiparasitic agent in farm animals and pets and as the active ingredient of insecticides and nematicides. In this study, the effects of abamectin on the bioenergetics of mitochondria isolated from rat liver were evaluated. Mitochondria are responsible for converting the energy released by electron transport and stored as the binding energy molecule ATP. Xenobiotics that interfere with its synthesis or utilization can be acutely or chronically toxic. Abamectin (5–25μM) caused concentration-dependent inhibition of the respiratory chain without affecting the membrane potential or the activity of enzymes NADH dehydrogenase or succinate dehydrogenase. This behavior is similar to oligomycin and carboxyatractyloside and suggests direct action on FoF1-ATPase and/or the adenine nucleotide translocator (ANT). ABA more pronouncedly inhibited ATPase phosphohydrolase activity in intact, uncoupled mitochondria than in freeze–thawed disrupted mitochondria. ADP-stimulated depolarization of the mitochondrial membrane potential was also inhibited by ABA. Our results indicate that ABA interacts more specifically with the ANT, resulting in functional inhibition of the translocator with consequent impairment of mitochondrial bioenergetics. This effect could be involved in the ABA toxicity to hepatocytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.