Abstract

Adaptation to dehydration stress requires plants to coordinate environmental and endogenous signals to inhibit stomatal proliferation and modulate their patterning. The stress hormone abscisic acid (ABA) induces stomatal closure and restricts stomatal lineage to promote stress tolerance. Here, we report that mutants with reduced ABA levels, xer-1, xer-2 and aba2-2, developed stomatal clusters. Similarly, the ABA signaling mutant snrk2.2/2.3/2.6, which lacks core ABA signaling kinases, also displayed stomatal clusters. Exposure to ABA or inhibition of ABA catabolism rescued the increased stomatal density and spacing defects observed in xer and aba2-2, suggesting that basal ABA is required for correct stomatal density and spacing. xer-1 and aba2-2 displayed reduced expression of EPF1 and EPF2, and enhanced expression of SPCH and MUTE. Furthermore, ABA suppressed elevated SPCH and MUTE expression in epf2-1 and epf1-1, and partially rescued epf2-1 stomatal index and epf1-1 clustering defects. Genetic analysis demonstrated that XER acts upstream of the EPF2-SPCH pathway to suppress stomatal proliferation, and in parallel with EPF1 to ensure correct stomatal spacing. These results show that basal ABA and functional ABA signaling are required to fine-tune stomatal density and patterning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.