Abstract

Tepary beans (Phaseolus acutifolius Gray) are more drought tolerant and have stomata that are more sensitive to low leaf water potentials (ψ w) than common beans (P. vulgaris L.). This study was designed to examine the role of ABA in controlling stomatal behaviour in these species. Comparison of the bulk leaf ABA content does not explain why tepary stomata are more sensitive to low leaf ψ w compared to common bean (at -1.4 MPa ABA content increased 40-fold in common bean and 25-fold in tepary). We hypothesize that the greater sensitivity of tepary stomata to low leaf ψ w is related to a higher concentration of ABA in the xylem sap, and/or to a greater sensitivity of tepary stomata to ABA. Xylem sap of well-watered and water stressed plants is analyzed to determine the concentration of ABA, and whether ABA is a putative candidate serving as a chemical root signal in response to water stress in Phaseolus. To test stomatal sensitivity to ABA, epidermal strips and detached leaves are exposed to a range of ABA concentrations. The relationship between stomatal aperture and different ABA concentrations is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call