Abstract

ObjectiveMany studies focus on either afferent or efferent inputs (but not both), or on one structure of the genitourinary system. Only a few recent studies include information on inputs from sympathetic chain ganglia (SCG), and even fewer have examined the possibility of direct motor (autonomic or somatic) inputs from spinal cord ventral horns to genitourinary end organs. We sought to clarify origins of afferent and efferent information conveyed between the spinal cord, peripheral nervous system ganglia and genitourinary structures using retrograde and anterograde dye tracing methods.MethodsRetrograde dyes were injected into the bladder wall, EUS and clitoris of 14 female mongrel dogs (fluorogold, true blue, or nuclear yellow). Dorsal root ganglia (DRG), SCG, caudal mesenteric ganglion (CMG), pelvic plexus ganglia and spinal cord ventral horns were collected and examined for dye-labeled neuronal cell bodies. Detrusor muscle intramural ganglia were examined by injecting an anterograde dye (DiI) into the pelvic nerve’s anterior vesicle branch.ResultsRetrograde labeled cells were observed in several DRG, representative of afferent input from the bladder, EUS and clitoris. Anterograde labeling revealed a number of intramural ganglia in the bladder wall after distal pelvic nerve labeling. Sympathetic efferents included: (I) labeled cells in the CMG primarily from the bladder, yet small numbers from the EUS and clitoris; (II) labeled cells in SCG primarily from the bladder (widespread) and more localized input from EUS and clitoris; and (III) labeled cells in the intermediolateral cell column of thoracolumbar cord segments directly to the bladder and clitoris, a locale typically considered as sympathetic. Parasympathetic efferents included: (I) labeled neurons in pelvic plexus ganglia in bladder mesenteries; and (II) cells in lamina VII of sacral cord segments directly to the bladder and clitoris, a locale typically considered as sympathetic. Lastly, somatic (skeletal muscle) efferents to the EUS were evident as retrogradely labeled cells in sacral lamina IX cells.ConclusionsAfferent and efferent inputs to genitourinary structures are complex, yet a clear knowledge is needed to understand dysfunction after spinal cord injury and mechanisms underlying chronic pain syndromes in this region.Funding Source(s)NIH-NINDS NS070267

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call