Abstract
ObjectiveTraditional two-dimensional (2D) cell culture of adipose-derived stem cells (ADSCs) to halt stress urinary incontinence (SUI) progression have low retention rate and limited function recuperation poorly mimicking in vivo conditions. This study aims to examine the potential and mechanism of three-dimensional (3D) cultures of ADSCs in the treatment of SUI in a rat model simulating childbirth injury.MethodsADSCs were used to generate microtissues (MTs) with a hanging drop method. A total of 48 postpartum Sprague-Dawley rats were developed SUI models by 4 hours vagina dilation (VD) followed by bilateral ovariectomy (OV). Ten rats underwent sham OV without VD served as control group. The SUI rats were divided into three groups and received urethral injection of PBS, ADSCs and MTs. Specimens were harvested for histology examination and ADSCs tracking at day 1, 3, 7, 28 (n=3) post-injection. At day 28, the remaining rats were examined for voiding function. Western blot, immunofluorescence and immunohistochemistry staining were performed to examine histological changes and cytokines expression.ResultsThe voiding function and histopathological structures were better recovered in MTs group than those in ADSCs group. Compared with ADSCs, MTs express higher level of vascular endothelia growth factor (VEGF), TNFα stimulated gene/protein 6 (TSG-6) in vitro and represented a higher retention rate in vivo.ConclusionsUrethral injection of MTs better restored the voiding function than ADSCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.