Abstract

Glioblastoma multiforme (GBM) poses significant challenges in treatment due to its aggressive nature and immune escape mechanisms. Despite recent advances in immune checkpoint blockade therapies, GBM prognosis remains poor. The role of bromodomain and extraterminal domain protein 4 (BRD4) in GBM, especially its interaction with immune checkpoints, is not well understood. Bioinformatic gene expression and survival analysis for BRD4 was utilized in The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases. Clone formation assay, Transwell, Cell Counting Kit-8 (CCK8), and wound healing assay were utilized to validate BRD4's promotion of glioma cell proliferation, invasion, and migration. Chromatin immunoprecipitation (ChIP) assay was conducted to confirm BRD4 binding to the programmed death ligand 1 (PD-L1) promoter. A co-culture model was utilized with activated cluster of differentiation 8 (CD8)+ T cells and glioma cells. GL261 cells with BRD4 short hairpin RNA (shRNA) and/or PD-L1 cDNA were intracranially injected into mice to investigate tumor growth and survival time. Tumor tissue characteristics were analyzed using hematoxylin-eosin (H&E) and immunohistochemistry (IHC) staining and immune cell infiltration were assessed by flow cytometry. Bioinformatics analyses reveal elevated BRD4 expression in high-grade gliomas, correlating with poor patient survival. In vitro studies confirm that BRD4 promotes proliferation, invasion, and migration in GBM cells. BRD4 is a regulator of PD-L1 at the transcriptional level, implying its involvement in GBM's immune escape mechanisms. Co-culture experiments with CD8+ T cells demonstrate that BRD4 inhibition enhances tumor cell apoptosis. In vivo studies indicate that BRD4 knockout reduces immunosuppression, improves prognosis. Simultaneous manipulation of BRD4 and PD-L1 levels provides insights into their intertwined roles in shaping the immune landscape of GBM. BRD4 has the capability to regulate the growth of glioblastoma and enhance immune suppression by promoting PD-L1 expression. Targeting BRD4 represents a promising direction for future research and treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.