Abstract
Background:Rheumatoid arthritis (RA) is an autoimmune rheumatic disease of unknown etiology characterized by chronic erosive arthritis and systemic organ involvement resulting in early disability and shorter life expectancy. Neutrophils are suggested to play a substantial role in the induction and promotion of autoimmune inflammation in RA. This ability can be based on newly discovered feature of neutrophils to release neutrophil extracellular traps (NETs) during specific type cell death called NETosis. Hyperproduction of reactive oxygen species (ROS) is one of the factors promoting NETs production. With this background, the study of pro- and antioxidant enzymatic activities in RA patients can be of great interest.Objectives:To assess plasma activities of essential prooxidant and antioxidant enzymes in RA patients.Methods:The research was carried out in agreement with the WMA Declaration of Helsinki principles. 71 RA patients (46 women and 25 men) were enrolled in the study. The diagnosis was verified using ACR/EULAR criteria (2010). RA activity was measured using the Disease Activity Score of 28 joints (DAS28). 30 healthy persons comprise control group. Plasma xanthine oxidase (XO; ЕС 1.17.3.2), xanthine dehydrogenase (XDH; ЕС 1.17.1.4) and superoxide dismutase (SOD; ЕС 1.15.1.1) activities were measured using spectrophotometric technique. XO and XDG activities were expressed as nmol/ml/min, SOD activity – as units of action. Statistical analysis was performed using Statistica 6.0 software package. Differences were considered significant when p<0.05. Reference ranges were calculated as means ±2SD.Results:Mean age of patients was 43.2±3.6 years, mean RA duration was 11.9±2.6 years. 24 (33.8%) RA patients had low disease activity, and 6 (8.5%) patients had high one. Extra-articular manifestations were found in 30 (42.2%) patients. 30% of them had cardiovascular involvement, 23.3% – pulmonary lesions, and 23.3% had renal involvement. Reference ranges for XO, XDG, and SOD activities were 2.28-5.12 nmol/min/ml, 3,96-7,24 nmol/min/ml, and 3,13-6,58 units, respectively. We examined activities of these enzymes in circulation of RA patients with different patterns of clinical manifestations as well as relationship between RA activity and XO, XDG, and SOD activities. RA patients had increased both mean XO and mean SOD activities (p<0.001 for both enzymes). XO activity reached its highest values at maximum disease activity and overt extra-articular involvements, while SOD activity did it in moderate and high disease activities as well as in patients with joint manifestations. XDG activity was increased in low disease activity (р<0.001) and solely joint lesions (р=0.011), while moderate or high disease activities (р=0.008) and extra-articular involvements (р=0.025) were characterized by decreased activity of this enzyme.Conclusion:We have revealed substantial multidirectional changes of plasma XO and XDG activities in RA. Plasma enzymatic pattern in RA patients is characterized by activation of both oxidant and antioxidant metabolic pathways. Activities of XO and SOD were positively correlated with RA activity, while XDG activity was negative correlated with RA activity. The differences between selective articular RA type and RA form with extraarticular manifestations were also revealed. Changes in oxidant and antioxidant enzyme activities can be connected with anticitrulline autoimmunity in RA via production of citrulline-rich neutrophil extracellular traps, thus enhancing rheumatoid autoimmunity.Disclosure of Interests:None declared
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.