Abstract

The advanced backcross QTL (AB-QTL) strategy was utilised to locate quantitative trait loci (QTLs) for baking quality traits in two BC(2)F(3) populations of winter wheat. The backcrosses are derived from two German winter wheat cultivars, Batis and Zentos, and two synthetic, hexaploid wheat accessions, Syn022 and Syn086. The synthetics originate from hybridisations of wild emmer (T. turgidum spp. dicoccoides) and T. tauschii, rather than from durum wheat and T. tauschii and thus allowed for the first time to test for exotic QTL effects on wheat genomes A and B in addition to genome D. The investigated quality traits comprised hectolitre weight, grain hardness, flour yield Type 550, falling number, grain protein content, sedimentation volume and baking volume. One hundred and forty-nine SSR markers were applied to genotype a total of 400 BC(2)F(3) lines. For QTL detection, a mixed-model ANOVA was conducted, including the effects DNA marker, BC(2)F(3) line, environment and marker x environment interaction. Overall 38 QTLs significant for a marker main effect were detected. The exotic allele improved trait performance at 14 QTLs (36.8%), while the elite genotype contributed the favourable effect at 24 QTLs (63.2%). The favourable exotic alleles were mainly associated with grain protein content, though the greatest improvement of trait performance due to the exotic alleles was achieved for the traits falling number and sedimentation volume. At the QTL on chromosome 4B the exotic allele increased the falling number by 19.6% and at the QTL on chromosome 6D the exotic allele led to an increase of the sedimentation volume by 21.7%. The results indicate that synthetic wheat derived from wild emmer x T. tauschii carries favourable QTL alleles for baking quality traits, which might be useful for breeding improved wheat varieties by marker-assisted selection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.