Abstract

A theoretical study of the dynamical dielectric response of bulk lead at low energies is presented. The calculations are performed with full inclusion of the electronic band structure calculated by means of a first-principles pseudopotential approach. The effect of inclusion of the spin-orbit interaction in the band structure on the excitation spectra in Pb is analyzed, together with dynamical exchange-correlation and local-field effects. In general, results show significant anisotropy effects on the dielectric response of bulk Pb. At small momentum transfers along three different high-symmetry directions, the calculated excitation spectra present several peaks with strong acousticlike dispersion in the energy range below 2 eV. The analysis shows that only one of such modes existing at momentum transfers along the $\ensuremath{\Gamma}$--$K$ direction can be interpreted as a true acousticlike plasmon, whereas all other modes are originated from the enhanced number of intraband electron-hole excitations at corresponding energies. Comparison with available optical experimental data shows good agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.