Abstract

The behavior of carbon and nitrogen atoms in iron based solid solution is studied by ab initio density-functional-theory calculations. The interaction of a C or a N atom in $\ensuremath{\alpha}$-Fe with a vacancy, other C or N interstitials as well as self-interstitial atoms is discussed and compared to known experimental results. The migration of these two foreign interstitial atoms is determined in pure Fe or when a vacancy is present in the supercell. According to our results, there is a strong binding energy of C or N with vacancies, whereas a repulsion is observed with self-interstitial atoms. Furthermore, a vacancy can trap up to two C, and a covalent bonding forms between the two C atoms. The situation is not as clear for N atoms, and a competition between the formation of N-V pairs and NN-V triplets is very probable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.