Abstract
The charge-flipping algorithm in its band-flipping variant is capable of ab initio reconstructions of scattering densities with positive and negative values. It is shown that the method can be applied to reconstructions of difference electron densities of superstructures, i.e. densities obtained as a difference between the true scattering density and the average density over two or more subcells of the true structure. The amplitudes of reflections lying on the reciprocal lattice of the subcell are not required for the procedure. A series of examples shows applications of the method to the solution of superstructures in periodic crystals or quasicrystals as well as the application to ab initio solution of modulation of an incommensurately modulated structure from satellite reflections only and solution of a structure from a crystal twinned by reticular pseudomerohedry. The method is especially suited for solving pseudosymmetry problems occurring frequently in superstructures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Acta Crystallographica Section A Foundations of Crystallography
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.