Abstract

Ab initio molecular dynamics simulations of low-energy recoil events in ThO2, CeO2, and ZrO2 have been carried out to determine the threshold displacement energies, resulting defect configurations, dynamics of defect generation, and role of charge transfer during the process. The results reveal that, in most cases, these fluorite structure oxides exhibit a similar response to low-energy recoils. A variety of different defect configurations are created, consisting mainly of vacancies and interstitials. Charge transfer occurs during the dynamic displacement process. Local charge redistribution leads to cation and O vacancies being negatively and positively charged, respectively. Likewise, due to charge redistribution, the cation and O interstitials are less positively and negatively charged, respectively, than the ions on lattice sites in perfect MO2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.