Abstract

Ab initio electronic structure calculations of the ideal strength of Fe, Co, Ni, and Cr under isotropic tension were performed using the linear muffin-tin orbital method in the atomic sphere approximation. Magnetic ordering was taken into account by means of a spin-polarized calculation. Two approximations for the exchange-correlation term were employed: namely, the local (spin) density approximation and the generalized gradient approximation. Computed values of equilibrium lattice parameters, bulk moduli, and magnetic moments were compared with available experimental data. The stability of the ground-state structure in the tensile region was assessed via comparison of its total energy and enthalpy with those of some other structures. No instabilities were found before reaching the inflection point on the total energy versus volume curve and the stress related to this point was therefore considered to be the ideal strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call