Abstract

Nonradiative carrier recombination is of both applied and fundamental interest. Here a novel algorithm is introduced to calculate such a deep level nonradiative recombination rate using the ab initio density functional theory. This algorithm can calculate the electron-phonon coupling constants all at once. An approximation is presented to calculate the phonon modes for one impurity in a large supercell. The neutral Zn impurity site together with a N vacancy is considered as the carrier-capturing deep impurity level in bulk GaN. Its capture coefficient is calculated as 5.57 × 10(-10)cm(3)/s at 300 K. We found that there is no apparent onset of such a nonradiative process as a function of temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call